[PDF] Advanced Quantum mechanics by Ashok Das book free download
[PDF] Advanced Quantum mechanics by Ashok Das book free download
Advanced Quantum mechanics book PDF |
Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
1 Relativistic equations . . . . . . . . . . . . . . 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . 1
1.2 Notations. . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Klein-Gordon equation . . . 10
1.3.1 Klein paradox . . . 14
1.4 Dirac equation . . . 19
1.5 References . . . 26
2 Solutions of the Dirac equation . . . 27
2.1 Plane wave solutions . . . 27
2.2 Normalization of the wave function . . . 34
2.3 Spin of the Dirac particle. . . 40
2.4 Continuity equation . . . 44
2.5 Dirac’s hole theory . . . 47
2.6 Properties of the Dirac matrices . . . 49
2.6.1 Fierz rearrangement . . . 58
2.7 References . . . 62
3 Properties of the Dirac equation . . . 65
3.1 Lorentz transformations . . . 65
3.2 Covariance of the Dirac equation . . . 72
3.3 Transformation of bilinears . . . 82
3.4 Projection operators, completeness relation . . . 84
3.5 Helicity . . . 92
3.6 Massless Dirac particle . . . 94
3.7 Chirality . . . 99
3.8 Non-relativistic limit of the Dirac equation. . . 105
3.9 Electron in an external magnetic field . . . 107
3.10 Foldy-Wouthuysen transformation. . . 111
3.11 Zitterbewegung . . . 117
3.12 References . . . 122
4 Representations of Lorentz and Poincar´e groups . . . 125
4.1 Symmetry algebras . . . 125
4.1.1 Rotation . . . 125
4.1.2 Translation . . . 129
4.1.3 Lorentz transformation . . . 130
4.1.4 Poincar´e transformation . . . 133
4.2 Representations of the Lorentz group . . . 135
4.2.1 Similarity transformations and representations . . . 140
4.3 Unitary representations of the Poincar´e group . . . 147
4.3.1 Massive representation . . . 151
4.3.2 Massless representation . . . 155
4.4 References . . . 160
5 Free Klein-Gordon field theory . . . 161
5.1 Introduction . . . 161
5.2 Lagrangian density . . . 163
5.3 Quantization. . . 167
5.4 Field decomposition . . . 171
5.5 Creation and annihilation operators. . . 175
5.6 Energy eigenstates . . . 186
5.7 Physical meaning of energy eigenstates . . . 190
5.8 Green’s functions . . . 194
5.9 Covariant commutation relations . . . 205
5.10 References . . . 209
6 Self-interacting scalar field theory . . . 211
6.1 N¨other’s theorem . . . 211
6.1.1 Space-time translation . . . 215
6.2 Self-interacting φ
4
theory. . . . 219
6.3 Interaction picture and time evolution operator . . . 223
6.4 S-matrix . . . 229
6.5 Normal ordered product and Wick’s theorem . . . . 233
6.6 Time ordered products and Wick’s theorem . . . . . 241
6.7 Spectral representation and dispersion relation . . . 246
6.8 References . . . 254
7 Complex scalar field theory . . . 257
7.1 Quantization. . . . 257
7.2 Field decomposition. . . 260
7.3 Charge operator . . . . 263
7.4 Green’s functions . . . 268
7.5 Spontaneous symmetry breaking and the Goldstone
theorem . .. . . . 270
7.6 Electromagnetic coupling. . . . . 281
7.7 References . . . 283
8 Dirac field theory. . . . 285
8.1 Pauli exclusion principle . . . . 285
8.2 Quantization of the Dirac field . . . . 286
8.3 Field decomposition. . . . . 291
8.4 Charge operator . . . . 297
8.5 Green’s function . . . 300
8.6 Covariant anti-commutation relations. . . 303
8.7 Normal ordered and time ordered products . . . . . 305
8.8 Massless Dirac fields . . . . 308
8.9 Yukawa interaction . . . 312
8.10 Feynman diagrams . . . . . 318
8.11 References . . . . . 325
9 Maxwell field theory . . . . . 327
9.1 Maxwell’s equations . . . . . 327
9.2 Canonical quantization . . . . 330
9.3 Field decomposition . . . . 335
9.4 Photon propagator . . . . 342
9.5 Quantum electrodynamics . . . . 347
9.6 Physical processes . . . 350
9.7 Ward-Takahashi identity in QED . . . 355
9.8 Covariant quantization of the Maxwell theory . . . . 360
9.9 References . . . . 376
10 Dirac method for constrained systems . . . 379
10.1 Constrained systems . . . . . 379
10.2 Dirac method and Dirac bracket. . . . 384
10.3 Particle moving on a sphere . . . . 390
10.4 Relativistic particle . . . . 395
10.5 Dirac field theory . . . . 401
10.6 Maxwell field theory . . . . . 407
10.7 References . . . . 413
11 Discrete symmetries . . . . . 415
11.1 Parity. . .. . . . . . 415
11.1.1 Parity in quantum mechanics . . . . . . . . . . 417
11.1.2 Spin zero field . . . . . . . . . 424
11.1.3 Photon field . .. . . . . 428
11.1.4 Dirac field . . . . 429
11.2 Charge conjugation . . . . . . . 436
11.2.1 Spin zero field . . . . . . . 437
11.2.2 Dirac field . . .. . . . . 441
11.2.3 Majorana fermions . . . . . . . . . 449
11.2.4 Eigenstates of charge conjugation . . . . 453
11.3 Time reversal. . . . . 458
11.3.1 Spin zero field and Maxwell’s theory . . . . . . 464
11.3.2 Dirac fields . . . . 467
11.3.3 Consequences of T invariance . . . . . 473
11.3.4 Electric dipole moment of neutron . . . . . . . 477
11.4 CPT theorem . . . 479
11.4.1 Equality of mass for particles and antiparticles 479
11.4.2 Electric charge for particles and antiparticles . 480
11.4.3 Equality of lifetimes for particles and antipar-ticles . .. . . . . . . 480
11.5 References .. . . . 482
12 Yang-Mills theory . .. . . . 485
12.1 Non-Abelian gauge theories . . . . . 485
12.2 Canonical quantization of Yang-Mills theory . . . . . 502
12.3 Path integral quantization of gauge theories . . . . . 512
12.4 Path integral quantization of tensor fields . . . . . . 530
12.5 References . . . . . . 542
13 BRST invariance and its consequences . . .. . 545
13.1 BRST symmetry . . . . . . 545
13.2 Covariant quantization of Yang-Mills theory . . . . . 550
13.3 Unitarity . . . . . . 561
13.4 Slavnov-Taylor identity .. . . . 565
13.5 Feynman rules . . . . . 571
13.6 Ghost free gauges. . . . . 578
13.7 References . . . . . 581
14 Higgs phenomenon and the standard model . . . . . . . . . 583
14.1 St¨uckelberg formalism . . . . 583
14.2 Higgs phenomenon . . . . . 589
14.3 The standard model. . . . . . . 596
14.3.1 Field content . . . . . . . 599
14.3.2 Lagrangian density . . . . . . 601
14.3.3 Spontaneous symmetry breaking . . . . 605
14.4 References . . . . . . . . 616
15 Regularization of Feynman diagrams. . . . . . . . . . . . . 619
15.1 Introduction . .. . . . . 619
15.2 Loop expansion . . . . . . . 621
15.3 Cut-off regularization . . . . . . . 623
15.3.1 Calculation in the Yukawa theory . . . . . . . . 631
15.4 Pauli-Villars regularization . . . . 638
15.5 Dimensional regularization . . . 647
15.5.1 Calculations in QED . . . . . 656
15.6 References . . . . . . 666
16 Renormalization theory . . . . . 669
16.1 Superficial degree of divergence . . . . 669
16.2 A brief history of renormalization . . . . . 679
16.3 Schwinger-Dyson equation . . . . . . 690
16.4 BPHZ renormalization . . . . . . 692
16.5 Renormalization of gauge theories. . . . . 721
16.6 Anomalous Ward identity . . . 724
16.7 References . . . .. . 732
17 Renormalization group and equation . . . . . . 733
17.1 Gell-Mann-Low equation . . . . 733
17.2 Renormalization group . . . . 739
17.3 Renormalization group equation . . . 744
17.4 Solving the renormalization group equation . . . . . 748
17.5 Callan-Symanzik equation . . . . . 759
17.6 References . . .. . . . 766
Index . . . . . . . . 769
[PDF] Advanced Quantum mechanics by Ashok Das book free download for click here👉👉
Click here
Join telegram for more updates👉👉
No comments
Stay active on email id to see comment reply
Note: Only a member of this blog may post a comment.