Atomic Physics by C. J. FOOT, Department of Physics ,University of Oxford free download pdf
Atomic Physics by C. J. FOOT, Department of Physics ,University of Oxford free download pdf
Atomic physics book by C. J. Foot |
Contents :-
1 Early atomic physics 1
1.1 Introduction 1
1.2 Spectrum of atomic hydrogen 1
1.3 Bohr’s theory 3
1.4 Relativistic effects 5
1.5 Moseley and the atomic number 7
1.6 Radiative decay 11
1.7 Einstein A and B coefficients 11
1.8 The Zeeman effect 13
1.8.1 Experimental observation of the Zeeman effect 17
1.9 Summary of atomic units 18
Exercises 19
2 The hydrogen atom 22
2.1 The Schr¨odinger equation 22
2.1.1 Solution of the angular equation 23
2.1.2 Solution of the radial equation 26
2.2 Transitions 29
2.2.1 Selection rules 30
2.2.2 Integration with respect to θ 32
2.2.3 Parity 32
2.3 Fine structure 34
2.3.1 Spin of the electron 35
2.3.2 The spin–orbit interaction 36
2.3.3 The fine structure of hydrogen 38
2.3.4 The Lamb shift 40
2.3.5 Transitions between fine-structure levels 41
Further reading 42
Exercises 42
3 Helium 45
3.1 The ground state of helium 45
3.2 Excited states of helium 46
3.2.1 Spin eigenstates 51
3.2.2 Transitions in helium 52
3.3 Evaluation of the integrals in helium 53
3.3.1 Ground state 53
3.3.2 Excited states: the direct integral 54
3.3.3 Excited states: the exchange integral 55
Further reading 56
Exercises 58
4 The alkalis 60
4.1 Shell structure and the periodic table 60
4.2 The quantum defect 61
4.3 The central-field approximation 64
4.4 Numerical solution of the Schr¨odinger equation 68
4.4.1 Self-consistent solutions 70
4.5 The spin–orbit interaction: a quantum mechanical
approach 71
4.6 Fine structure in the alkalis 73
4.6.1 Relative intensities of fine-structure transitions 74
Further reading 75
Exercises 76
5 The LS-coupling scheme 80
5.1 Fine structure in the LS-coupling scheme 83
5.2 The jj-coupling scheme 84
5.3 Intermediate coupling: the transition between coupling
schemes 86
5.4 Selection rules in the LS-coupling scheme 90
5.5 The Zeeman effect 90
5.6 Summary 93
Further reading 94
Exercises 94
6 Hyperfine structure and isotope shift 97
6.1 Hyperfine structure 97
6.1.1 Hyperfine structure for s-electrons 97
6.1.2 Hydrogen maser 100
6.1.3 Hyperfine structure for l = 0 101
6.1.4 Comparison of hyperfine and fine structures 102
6.2 Isotope shift 105
6.2.1 Mass effects 105
6.2.2 Volume shift 106
6.2.3 Nuclear information from atoms 108
6.3 Zeeman effect and hyperfine structure 108
6.3.1 Zeeman effect of a weak field, µBB<A 109
6.3.2 Zeeman effect of a strong field, µBB>A 110
6.3.3 Intermediate field strength 111
6.4 Measurement of hyperfine structure 112
6.4.1 The atomic-beam technique 114
6.4.2 Atomic clocks 118
Further reading 119
Exercises 120
7 The interaction of atoms with radiation 123
7.1 Setting up the equations 123
7.1.1 Perturbation by an oscillating electric field 124
7.1.2 The rotating-wave approximation 125
7.2 The Einstein B coefficients 126
7.3 Interaction with monochromatic radiation 127
7.3.1 The concepts of π-pulses and π/2-pulses 128
7.3.2 The Bloch vector and Bloch sphere 128
7.4 Ramsey fringes 132
7.5 Radiative damping 134
7.5.1 The damping of a classical dipole 135
7.5.2 The optical Bloch equations 137
7.6 The optical absorption cross-section 138
7.6.1 Cross-section for pure radiative broadening 141
7.6.2 The saturation intensity 142
7.6.3 Power broadening 143
7.7 The a.c. Stark effect or light shift 144
7.8 Comment on semiclassical theory 145
7.9 Conclusions 146
Further reading 147
Exercises 148
8 Doppler-free laser spectroscopy 151
8.1 Doppler broadening of spectral lines 151
8.2 The crossed-beam method 153
8.3 Saturated absorption spectroscopy 155
8.3.1 Principle of saturated absorption spectroscopy 156
8.3.2 Cross-over resonances in saturation spectroscopy 159
8.4 Two-photon spectroscopy 163
8.5 Calibration in laser spectroscopy 168
8.5.1 Calibration of the relative frequency 168
8.5.2 Absolute calibration 169
8.5.3 Optical frequency combs 171
Further reading 175
Exercises 175
9 Laser cooling and trapping 178
9.1 The scattering force 179
9.2 Slowing an atomic beam 182
9.2.1 Chirp cooling 184
9.3 The optical molasses technique 185
9.3.1 The Doppler cooling limit 188
9.4 The magneto-optical trap 190
9.5 Introduction to the dipole force 194
9.6 Theory of the dipole force 197
9.6.1 Optical lattice 201
9.7 The Sisyphus cooling technique 203
9.7.1 General remarks 203
9.7.2 Detailed description of Sisyphus cooling 204
9.7.3 Limit of the Sisyphus cooling mechanism 207
9.8 Raman transitions 208
9.8.1 Velocity selection by Raman transitions 208
9.8.2 Raman cooling 210
9.9 An atomic fountain 211
9.10 Conclusions 213
Exercises 214
10 Magnetic trapping, evaporative cooling and
Bose–Einstein condensation 218
10.1 Principle of magnetic trapping 218
10.2 Magnetic trapping 220
10.2.1 Confinement in the radial direction 220
10.2.2 Confinement in the axial direction 221
10.3 Evaporative cooling 224
10.4 Bose–Einstein condensation 226
10.5 Bose–Einstein condensation in trapped atomic vapours 228
10.5.1 The scattering length 229
10.6 A Bose–Einstein condensate 234
10.7 Properties of Bose-condensed gases 239
10.7.1 Speed of sound 239
10.7.2 Healing length 240
10.7.3 The coherence of a Bose–Einstein condensate 240
10.7.4 The atom laser 242
10.8 Conclusions 242
Exercises 243
11 Atom interferometry 246
11.1 Young’s double-slit experiment 247
11.2 A diffraction grating for atoms 249
11.3 The three-grating interferometer 251
11.4 Measurement of rotation 251
11.5 The diffraction of atoms by light 253
11.5.1 Interferometry with Raman transitions 255
11.6 Conclusions 257
Further reading 258
Exercises 258
12 Ion traps 259
12.1 The force on ions in an electric field 259
12.2 Earnshaw’s theorem 260
12.3 The Paul trap 261
12.3.1 Equilibrium of a ball on a rotating saddle 262
12.3.2 The effective potential in an a.c. field 262
12.3.3 The linear Paul trap 262
12.4 Buffer gas cooling 266
12.5 Laser cooling of trapped ions 267
12.6 Quantum jumps 269
12.7 The Penning trap and the Paul trap 271
12.7.1 The Penning trap 272
12.7.2 Mass spectroscopy of ions 274
12.7.3 The anomalous magnetic moment of the electron 274
12.8 Electron beam ion trap 275
12.9 Resolved sideband cooling 277
12.10 Summary of ion traps 279
Further reading 279
Exercises 280
13 Quantum computing 282
13.1 Qubits and their properties 283
13.1.1 Entanglement 284
13.2 A quantum logic gate 287
13.2.1 Making a CNOT gate 287
13.3 Parallelism in quantum computing 289
13.4 Summary of quantum computers 291
13.5 Decoherence and quantum error correction 291
13.6 Conclusion 293
Further reading 294
Exercises 294
A Appendix A: Perturbation theory 298
A.1 Mathematics of perturbation theory 298
A.2 Interaction of classical oscillators of similar frequencies 299
B Appendix B: The calculation of electrostatic energies 302
C Appendix C: Magnetic dipole transitions 305
D Appendix D: The line shape in saturated absorption
spectroscopy 307
E Appendix E: Raman and two-photon transitions 310
E.1 Raman transitions 310
E.2 Two-photon transitions 313
F Appendix F: The statistical mechanics of
Bose–Einstein condensation 315
F.1 The statistical mechanics of photons 315
F.2 Bose–Einstein condensation 316
F.2.1 Bose–Einstein condensation in a harmonic trap 318
References 319
Index 326
Atomic physics book by C. J. Foot free download pdf for Click here👉👉
Click here
Join telegram for more update👉🔥👉
No comments
Stay active on email id to see comment reply
Note: Only a member of this blog may post a comment.