Members

Breaking News

This website provides you the notes ,Books PDF and previous year papers of B.Sc and MSc Physics

[PDF] Tensor & their application by Nazrul Islam book free download pdf

 [PDF] Tensor & their application by Nazrul Islam book free download pdf

[PDF] Tensor & their application by Nazrul Islam book free download pdf


Description :-

‘Tensors’ were introduced by Professor Gregorio Ricci of University of Padua (Italy) in 1887
primarily as extension of vectors. A quantity having magnitude only is called Scalar and a quantity with
magnitude and direction both, called Vector. But certain quantities are associated with two or more
directions, such a quantity is called Tensor. The stress at a point of an elastic solid is an example of a
Tensor which depends on two directions one normal to the area and other that of the force on it.
Tensors have their applications to Riemannian Geometry, Mechanics, Elasticity, Theory of Relativity,
Electromagnetic Theory and many other disciplines of Science and Engineering.
This book has been presented in such a clear and easy way that the students will have no difficulty
in understanding it. The definitions, proofs of theorems, notes have been given in details.
The subject is taught at graduate/postgraduate level in almost all universities.
In the end, I wish to thank the publisher and the printer for their full co-operation in bringing out
the book in the present nice form.
Suggestions for further improvement of the book will be gratefully acknowledged.



CONTENTS :-


Foreword .............................................................................................................vii
Preface ................................................................................................................ ix
Chapter–1 Preliminaries........................................................................................... 1-5
1.1. n-dimensional Space ...............................................................................................1
1.2. Superscript and Subscript .......................................................................................1
1.3. The Einstein's Summation Convention ......................................................................1
1.4. Dummy Index .......................................................................................................1
1.5. Free Index .............................................................................................................2
1.6. Krönecker Delta .....................................................................................................2
Exercises ...............................................................................................................5
Chapter–2 Tensor Algebra ..................................................................................... 6-30
2.1. Introduction ..........................................................................................................6
2.2. Transformation of Coordinates ................................................................................6
2.3. Covariant and Contravariant Vectors .........................................................................7
2.4. Contravariant Tensor of Rank Two ..........................................................................9
2.5. Covariant Tensor of Rank Two ................................................................................9
2.6. Mixed Tensor of Rank Two.....................................................................................9
2.7. Tensor of Higher Order ......................................................................................... 14
2.8. Scalar or Invariant ................................................................................................ 15
2.9. Addition and Subtraction of Tensors....................................................................... 15
2.10. Multiplication of Tensors (Outer Product of Tensors)............................................... 16
2.11. Contraction of a Tensor ........................................................................................ 18
2.12. Inner Product of Two Tensors .............................................................................. 18
2.13. Symmetric Tensors .............................................................................................. 20
2.14. Skew-symmetric Tensor ....................................................................................... 20
2.15. Quotient Law ....................................................................................................... 24

xii Tensors and Their Applications
2.16. Conjugate (or Reciprocal) Symmetric Tensor .......................................................... 25
2.17. Relative Tensor .................................................................................................... 26
Examples ............................................................................................................ 26
Exercises ............................................................................................................. 29
Chapter–3 Metric Tensor and Riemannian Metric ............................................ 31-54
3.1. The Metric Tensor ............................................................................................... 31
3.2. Conjugate Metric Tensor (Contravariant Tensor)...................................................... 34
3.3. Length of a Curve ................................................................................................ 42
3.4. Associated Tensor ................................................................................................ 43
3.5. Magnitude of Vector ............................................................................................. 43
3.6. Scalar Product of Two Vectors .............................................................................. 44
3.7. Angle Between Two Vectors .................................................................................. 45
3.8. Angle Between Two Coordinate Curves .................................................................. 47
3.9. Hypersurface ....................................................................................................... 48
3.10. Angle Between Two Coordinate Hyper surface ........................................................ 48
3.11. n-Ply Orthogonal System of Hypersurfaces ............................................................. 49
3.12. Congruence of Curves .......................................................................................... 49
3.13. Orthogonal Ennuple .............................................................................................. 49
Examples ............................................................................................................ 52
Exercises ............................................................................................................. 54
Chapter–4 Christoffel’s Symbols and Covariant Differentiation ................................ 55-84
4.1. Christoffel’s Symbol............................................................................................. 55
4.2. Transformtion of Christoffel’s Symbols .................................................................. 64
4.3. Covariant Differentiation of a Covariant Vector ........................................................ 67
4.4. Covariant Differentiation of a Contravariant Vector................................................... 68
4.5. Covariant Differentiation of Tensors ....................................................................... 69
4.6. Ricci’s Theorem .................................................................................................. 71
4.7. Gradient, Divergence and Curl ............................................................................... 75
4.8. The Laplacian Operator......................................................................................... 80
Exercises ............................................................................................................. 83
Chapter–5 Riemann-Christoffel Tensor ............................................................ 85-110
5.1. Riemann-Christoffel Tensor................................................................................... 85
5.2. Ricci Tensor ........................................................................................................ 88
5.3. Covariant Riemann-Christoffel Tensor .................................................................... 89
5.4. Properties of Riemann-Christoffel Tensors of First Kind Ri j k l
................................... 91
5.5. Bianchi Identity .................................................................................................... 94
5.6. Einstein Tensor .................................................................................................... 95
5.7. Riemannian Curvature of Vn
.................................................................................. 96
Contents xiii
5.8. Formula For Riemannian Curvature in Terms of Covariant
Curvature Tensor of Vn
......................................................................................... 98
5.9. Schur’s Theorem ............................................................................................... 100
5.10. Mean Curvature ................................................................................................. 101
5.11. Ricci Principal Directions .................................................................................... 102
5.12. Einstein Space ................................................................................................... 103
5.13. Weyl Tensor or Projective Curvature Tensor ......................................................... 104
Examples .......................................................................................................... 106
Exercises ........................................................................................................... 109
Chapter–6 The e-systems and the Generalized Krönecker Deltas ................111-115
6.1. Completely Symmetric .........................................................................................111
6.2. Completely Skew-symmetric ................................................................................111
6.3. e-system ........................................................................................................... 112
6.4. Generalized Krönecker Delta ................................................................................ 112
6.5. Contraction of i jk
áâã ä ............................................................................................ 114
Exercises ........................................................................................................... 115
Chapter–7 Geometry ........................................................................................ 116-141
7.1. Length of Arc .................................................................................................... 116
7.2. Curvilinear Coordinates in E3
.............................................................................. 120
7.3. Reciprocal Base System Covariant and Contravariant Vectors .................................. 122
7.4. On The Meaning of Covariant Derivatives ............................................................. 127
7.5. Intrinsic Differentiation ....................................................................................... 131
7.6. Parallel Vector Fields........................................................................................... 134
7.7. Geometry of Space Curves ................................................................................. 134
7.8. Serret-Frenet Formulae ....................................................................................... 138
7.9. Equations of A Straight Line ................................................................................ 140
Exercises ........................................................................................................... 141
Chapter–8 Analytical Mechanics..................................................................... 142-169
8.1. Introduction ...................................................................................................... 142
8.2. Newtonian Laws ................................................................................................ 142
8.3. Equations of Motion of Particle ............................................................................ 143
8.4. Conservative Force Field ..................................................................................... 144
8.5. Lagrangean Equation of Motion ........................................................................... 146
8.6. Applications of Lagrangean Equations ................................................................... 152
8.7. Hamilton’s Principle ............................................................................................ 153
8.8. Integral Energy .................................................................................................. 155
8.9. Principle of Least Action ..................................................................................... 156

xiv Tensors and Their Applications
8.10. Generalized Coordinates ...................................................................................... 157
8.11. Lagrangean Equation of Generalized Coordinates ................................................... 158
8.12. Divergence Theorem, Green’s Theorem, Laplacian Operator and Stoke’s
Theorem in Tensor Notation ................................................................................ 161
8.13. Gauss’s Theorem ............................................................................................... 164
8.14. Poisson’s Equation ............................................................................................. 166
8.15. Solution of Poisson’s Equation ............................................................................. 167
Exercises ........................................................................................................... 169
Chapter–9 Curvature of a Curve, Geodesic .................................................... 170-187
9.1. Curvature of Curve, Principal Normal................................................................... 170
9.2. Geodesics ......................................................................................................... 171
9.3. Euler’s Condition ............................................................................................... 171
9.4. Differential Equations of Geodesics ...................................................................... 173
9.5. Geodesic Coordinates ......................................................................................... 175
9.6. Riemannian Coordinates ...................................................................................... 177
9.7. Geodesic Form of a Line Element ........................................................................ 178
9.8. Geodesics in Euclidean Space .............................................................................. 181
Examples .......................................................................................................... 182
Exercises ........................................................................................................... 186
Chapter–10 Parallelism of Vectors ................................................................. 188-204
10.1. Parallelism of a Vector of Constant Magnitude (Levi-Civita’s Concept) ..................... 188
10.2. Parallelism of a Vector of Variable Magnitude ............................ 191
10.3. Subspace of Riemannian Manifold ......................... 193
10.4. Parallelism in a Subspace ......... 196
10.5. Fundamental Theorem of Riemannian Geometry Statement ................. 199
Examples .............................. 200
Exercises .................................. 203
Chapter–11 Ricci’s Coefficients of Rotation and Congruence ....................... 205-217
11.1. Ricci’s Coefficient of Rotation ............... 205
11.2. Reason for the Name “Coefficients of Rotation” ................. 206
11.3. Curvature of Congruence ...... 207
11.4. Geodesic Congruence ............ 208
11.5. Normal Congruence .............. 209
11.6. Curl of Congruence .................. 211
11.7. Canonical Congruence ........... 213
Examples ............................... 215
Exercises ..................... 217

Contents xv
Chapter–12 Hypersurfaces ............ 218-242
12.1. Introduction .................. 218
12.2. Generalized Covariant Differentiation ............ 219
12.3. Laws of Tensor Differentiation .......... 220
12.4. Gauss’s Formula ...................... 222
12.5. Curvature of a Curve in a Hypersurface and Normal Curvature, Meunier’s Theorem,
Dupin’s Theorem ....................... 224
12.6. Definitions ....................... 227
12.7. Euler’s Theorem .................... 228
12.8. Conjugate Directions and Asymptotic Directions in a Hypersurface........... 229
12.9. Tensor Derivative of Unit Normal........................ 230
12.10. The Equation of Gauss and Codazzi .................. 233
12.11. Hypersurfaces with Indeterminate Lines of Curvature .................. 234
12.12. Central Quadratic Hypersurfaces ................ 235
12.13. Polar Hyperplane .............. 236
12.14. Evolute of a Hypersurface in an Euclidean Space ......................... 237
12.15. Hypersphere ................238
Exercises ..................... 241
Index .......... 243-245

[PDF] Tensor & their application by Nazrul Islam book free download PDF for click here 👉

                          Click here


Join telegram for more updates 👉👉

                        Join telegram






No comments

Stay active on email id to see comment reply

Note: Only a member of this blog may post a comment.